# Water Reuse in Green Buildings

Dr. G. R. Munavalli Assistant Professor Walchand College of Engg. Sangli

## Introduction

>Increased stress on water usage, sanitation and wastewater disposal

#### > Availability of water

- ✓ freshwater
- ✓ saltwater
- $\checkmark$  grey water and black water

Alternative water resources

- ✓ harvested rainwater
- ✓ reclaimed wastewater

Concept of green buildingReuse and recycling

# **Green Building and Reuse/Recycling of Water**

### Green building

- ✓ environmentally responsible
- ✓ resource-efficient throughout a building's life-cycle
- ✓ sustainable materials
- $\checkmark$  healthy indoor environments
- Impacts of the built environment

| Consumptive impact   | Environmental impact                                | Ultimate impact            |
|----------------------|-----------------------------------------------------|----------------------------|
| • Energy             | Waste                                               | Harm to Human Health       |
| • Water              | Pollution – Air, Water, Noise                       | Environment<br>Degradation |
| • Materials          | Heat islands                                        | Loss of Resources          |
| Natural<br>Resources | Storm water runoff<br>GreenTech 2009 SU 8 Feb. 2009 |                            |

# **Green Building and Reuse/Recycling of Water**

#### Environmental benefits

- ✓ Enhance and protect biodiversity and ecosystems
- ✓ Improve air and water quality
- ✓ Reduce waste streams
- ✓ Conserve and restore natural resources sustainable materials
- $\checkmark$  healthy indoor environments

### Recycling

- ✓ reusing treated wastewater for beneficial purposes
- $\checkmark$  synonymous with water reclamation and water reuse
- ✓ unplanned or planned (reusing a recycled water supply)
- ✓ nonpotable purposes
  - toilet flushing, floor cleeaning, irrigation, gardeening, car washing and construction

# **Green Building and Reuse/Recycling of Water**

- Forms of resuable treated wastewater
  - ✓ direct-potable
  - ✓ indirect potable
  - ✓ direct non-potable
  - ✓ indirect non-potable
- > Water recycling
  - $\checkmark$  to decrease wastewater discharge to sensitive water bodies
  - $\checkmark$  to reduce and prevent pollution
  - $\checkmark$  effective, successful and reliable water supply for nonpotable reuse
  - $\checkmark$  sustainable approach and can be cost-effective in the long term
  - $\checkmark$  initially expensive
  - $\checkmark$  plays greater role with increase in water and environmental needs

# **Greywater generation and composition**

Domestic wastewater

✓ Grey water (bathing 50%-60%, cloth washing 25%-30%,kitchen 10

- ✓ Black water (toilet, urinal)
- ≻Hand washing and bathing
  - ✓ least contaminated
  - $\checkmark$  soap, shampoo, hair dye, tooth paste and cleaning products
  - $\checkmark$  some faecal contamination
- Cloth washing
  - $\checkmark$  varies in quality from wash water to rinse water
  - $\checkmark$  faecal contamination
- Kitchen greywater
  - $\checkmark$  food particles, oils, fats and other wastes
  - $\checkmark$  promotes and supports the growth of microorganisms
  - ✓ chemical pollutants such as detergents and cleaning agents

# **Typical characteristics of Greywater (NEERI, 2007)**

| Parameter         | Unit      | Range     |
|-------------------|-----------|-----------|
| pH                | _         | 6.4-8.1   |
| Suspended solids  | mg/L      | 40-340    |
| Turbidity         | NTU       | 15-270    |
| BOD <sub>5</sub>  | mg/L      | 45-330    |
| Nitrite           | mg/L      | 0.1-1.0   |
| Ammonia           | mg/L      | 1.0-2.6   |
| TKN               | mg/L      | 2-23      |
| Total phosphorous | mg/L      | 0.1-0.8   |
| Sulphate          | mg/L      | <0.3-12.9 |
| Conductivity      | mS/cm     | 325-1140  |
| Hardness          | mg/L      | 15-50     |
| Sodium            | mg/L      | 60-250    |
| Faecal Coliform   | cfu/100mL | 106-108   |

### **Treatment options for Reuse/Recycling water**

#### General approaches

- $\checkmark$  waste minimization
- $\checkmark$  low cost treatment options
- Current practice
  - ✓ Greywater and black water sewerage systems
  - $\checkmark$  black water (effluent from septic tank) and grey water soak pit
  - ✓ untreated greywater gardening
- Practice in Green building
  - ✓ appropriate technology O & M view point
  - $\checkmark$  sustainable treatment plant
  - ✓ use of little mechanization, utilization of minimum electric power and reuse for non-domestic purposes
  - $\checkmark$  acceptable, affordable, and manageable for a long time
  - $\checkmark$  based on natural purification mechanisms

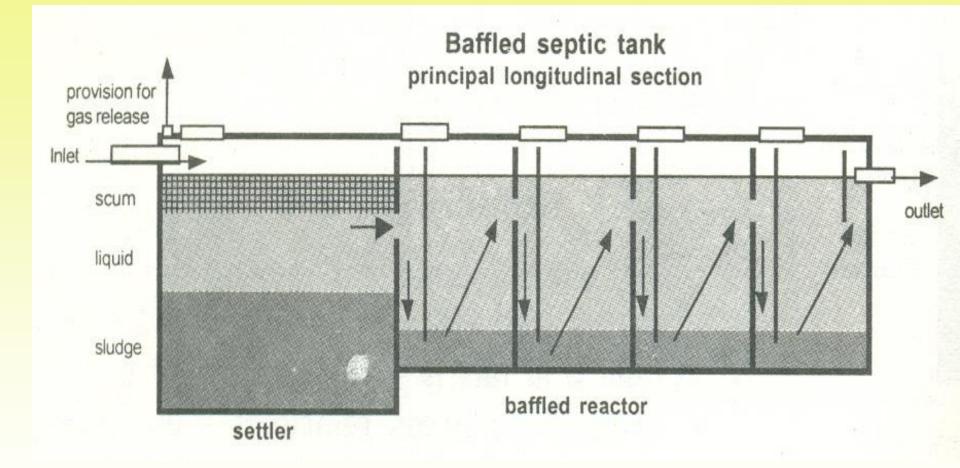
Scope for sharing the responsibility of domestic wastewater treatment

### **Treatment options for reuse/recycling**

➤ Anaerobic

✓ Baffled Septic tank✓ Anaerobic filter

> Aerobic


✓ Upflow –downflow filter✓ Slow sand filter

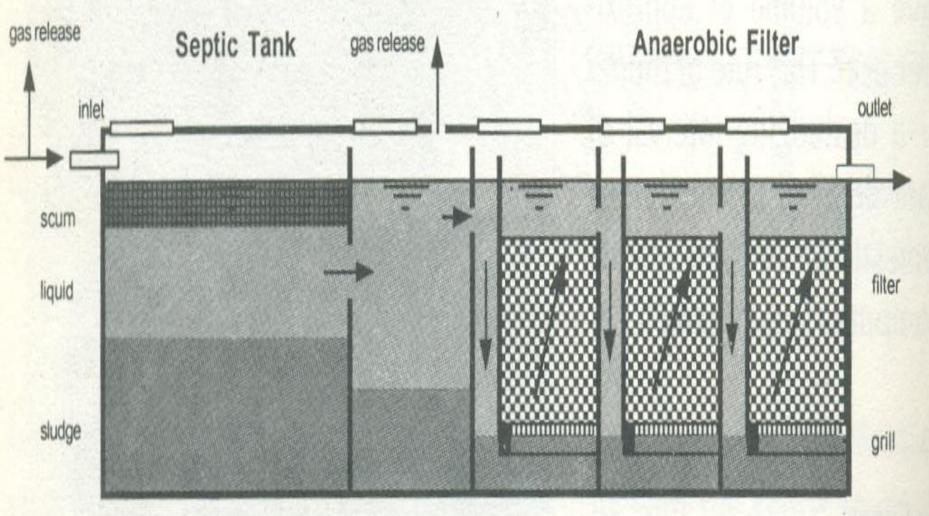
✓ Horizontal roughening filter

✓ Vermifilter

Anaerobic and Aerobic
 Constructed wetland

### Baffled septic tank

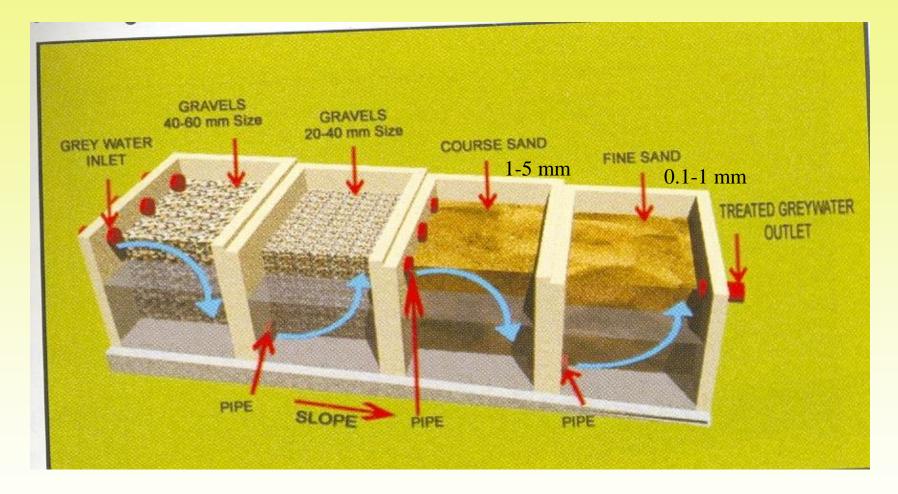



GreenTech 2009 SU 8 Feb. 2009

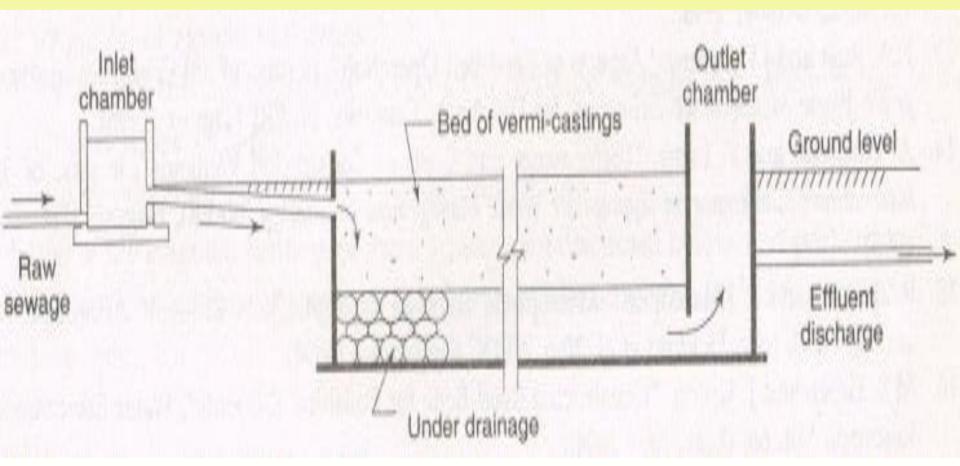
# **Baffled septic tank**

- > Combination of septic tank, the fluidized bed reactor and the UASB
- Four chambers in series
- > Principle
  - ✓ incoming wastewater passes through active bacteria sludge in each compartment
- Process features
  - $\checkmark$  equal distribution of inflow
  - $\checkmark$  wide spread contact between new and old substrate
- ➢ 65% 90% BOD removal
- Pre-treatment in settlers or septic tanks

### **Anaerobic filter**


# **Anaerobic Filter**




## **Anaerobic filter**

- > Anaerobic filter a column filled with various types of solid media
- Upflow through the column
- Treats both the non-settleable and dissolved solids
- Bacteria are immobile
- Surface area
- > Lawn or film that grows on the filter
- Cleaning by backflash of wastewater
- ➢ 70% 90% BOD removal
- Pre-treatment in settlers or septic tanks

### **Upflow-downflow Filter**



### Vermifilter

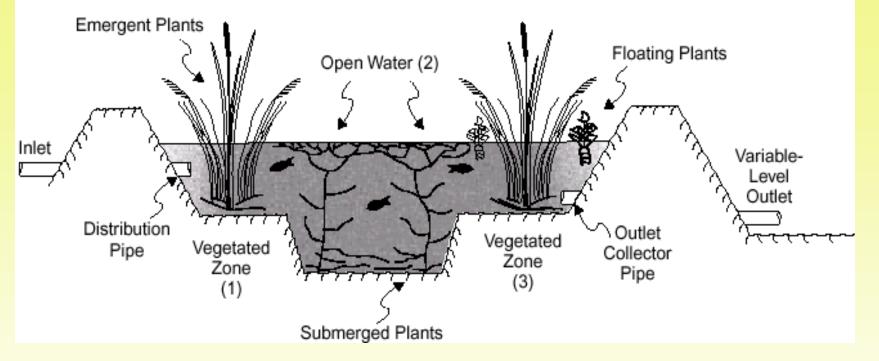


GreenTech 2009 SU 8 Feb. 2009

# Vermifilter

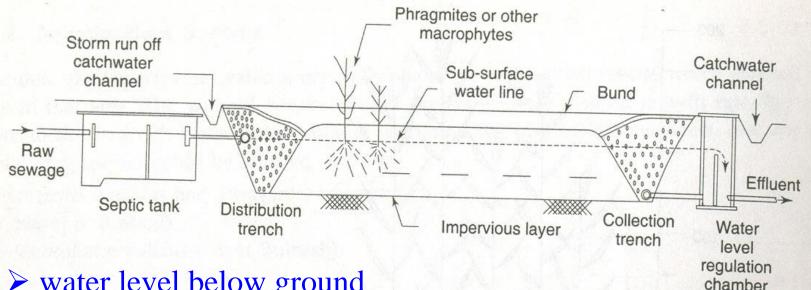
➢ Improved soil filter with earthworms, bacteria and active root zone bed of selected plants

➤ Work forces


✓ soil

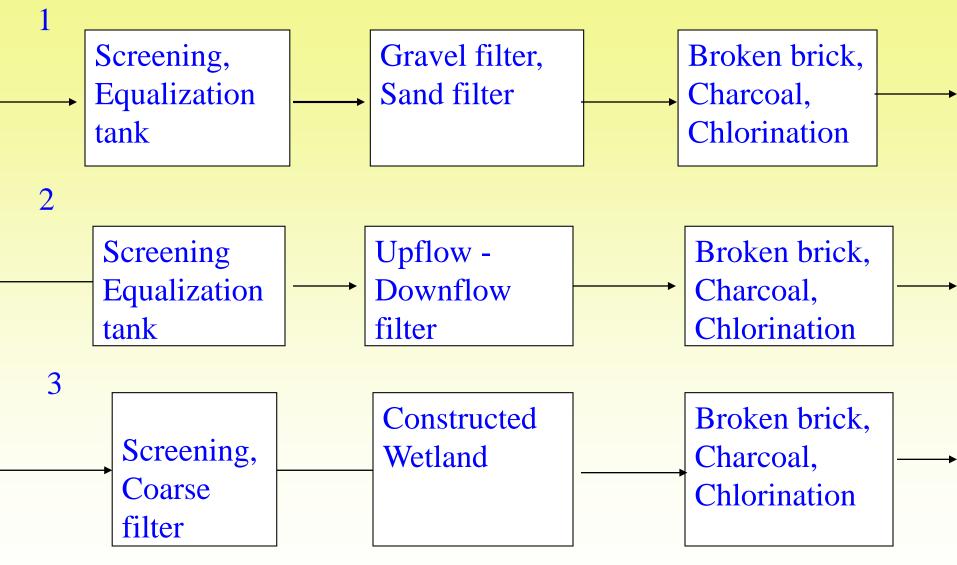
suitable environment for earthworms and microorganisms
 ✓ earthworm

- graze only on the surplus bacterial crop
- aids soil aeration
- produce vermicastings
- ✓ bacteria
- ✓ plant root
  - reduce the organics, total solids etc
- ✓ biofilm

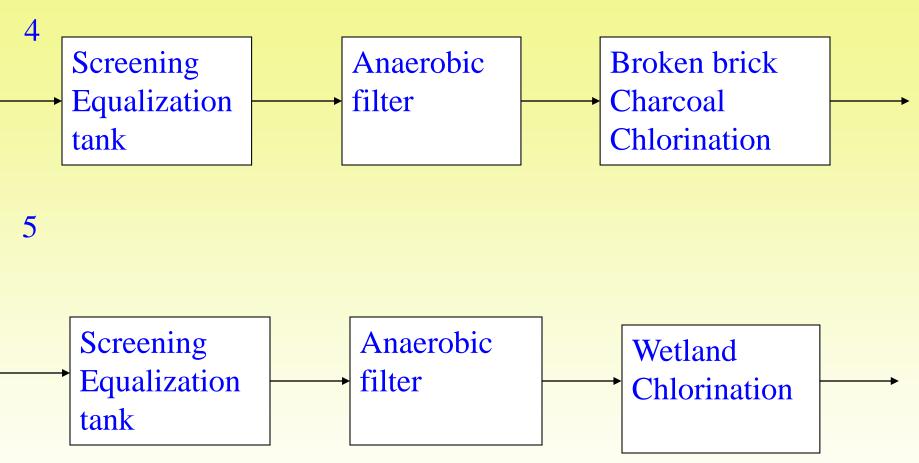

➢ Efficiency 80 % − 90 %

# **Constructed wetland:** Surface flow

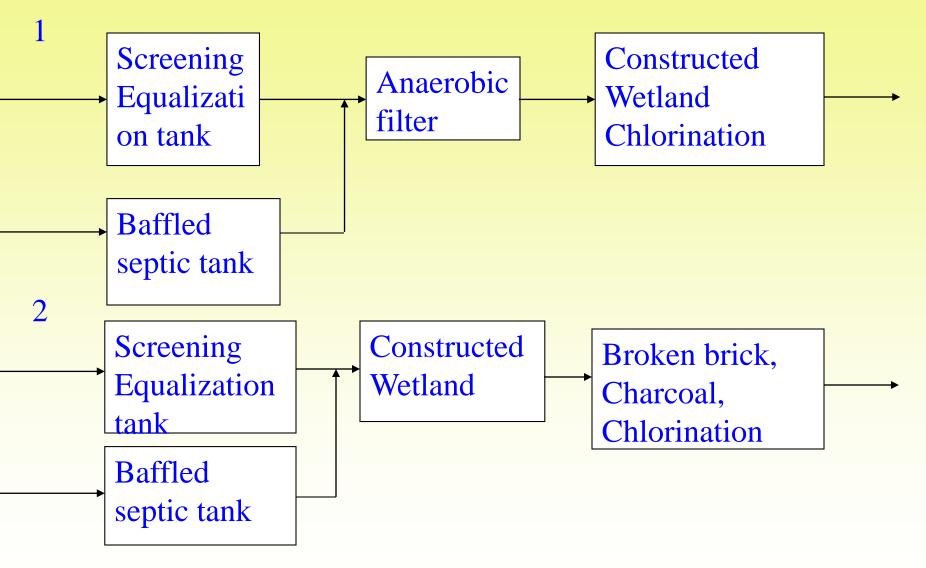



shallow basin, soil or other medium to support the roots of vegetation
water level above surface of medium
near-surface layer is aerobic
deeper waters and substrate are usually anaerobic

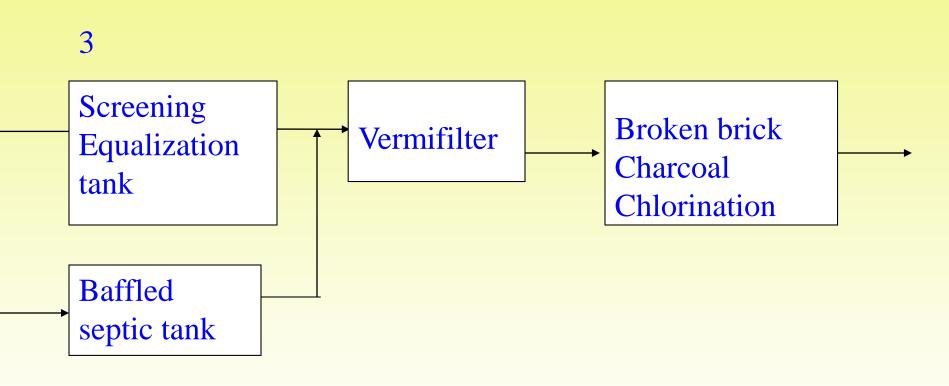
### **Constructed wetland:** *Subsurface flow*



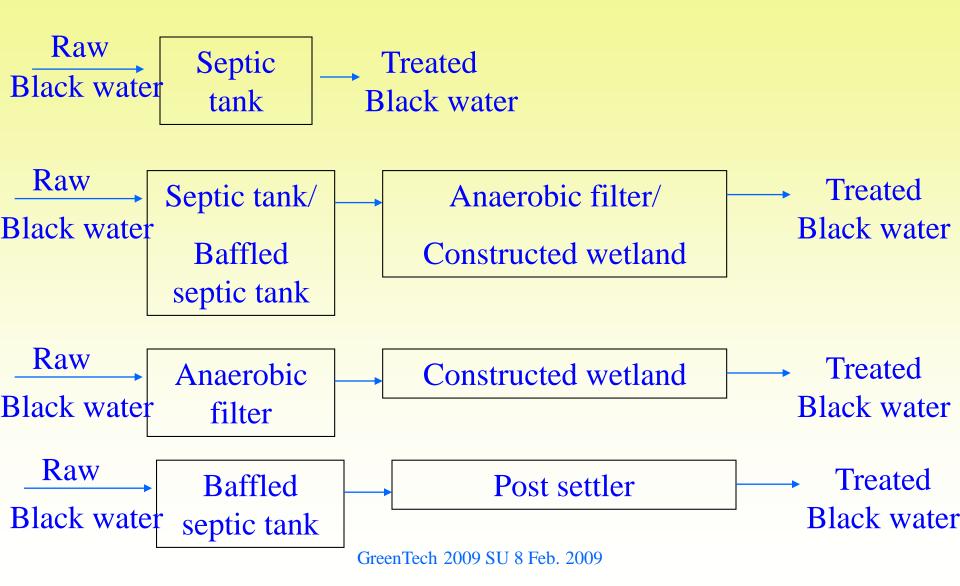

- > water level below ground
- > water flow through a sand or gravel
- $\succ$  roots penetrate the bed
- > porous medium provides greater surface area for treatment


### **Treatment alternatives for Grey water**




### **Treatment alternatives for Grey water**




### Treatment alternatives for Grey water and blackwater



## Treatment alternatives for Grey water and blackwater



### **Treatment alternatives for Black water**



## **Maintenance of treatment systems**

| Treatment Unit          | Activity                    | Frequency of cleaning    | Purpose                       |
|-------------------------|-----------------------------|--------------------------|-------------------------------|
| Equalization<br>tank    | De-sludging                 | Week                     | Maintain the volume           |
| Horizontal filter       | Cleaning                    | 10 days                  | Maintain efficiency           |
| Coarse filter           | Cleaning                    | Weekly                   | Maintain efficiency           |
| Sand filter             | Refill upper layer          | Weekly                   | Overcome choking              |
|                         | Cleaning                    | 10 days                  | Maintain effective filtration |
| Filter broken<br>bricks | Cleaning                    | 10 days                  | Colour removal                |
| Wetland                 | Removal of grass and plants | 2 months                 | Maintain efficiency           |
| Chlorination            | Proper dose                 | Daily                    | Disinfection                  |
| Collection tank         | Reuse of waterenTech 200    | 9 <b>2 dæy</b> seb. 2009 | Maintain quality of greywater |

# Cost of Existing Greywater reuse systems (NEERI, 2007)

| Greywater generation<br>(L/d) | Treatment units                                                                                                                            | Size LxBxH<br>(m)                                                                                   | Cost (USD) |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------|
| 1000                          | Equalization<br>Gravel(30-50mm)<br>Gravel(10-30mm)<br>Coarse sand(1-2mm)<br>Fine sand(0.5- 0.8mm)<br>Broken brick (20-40 mm)               | 3x2x0.5<br>0.4x2x0.5<br>0.35x2x0.5<br>0.5x2x0.5<br>0.35x2x0.5<br>0.35x2x0.5                         | 600        |
| 2500                          | Equalization<br>Gravel(15-25mm)<br>Gravel(8-15mm)<br>Coarse sand(1-1.4mm)<br>Fine sand(0.5- 0.8mm)<br>Charcoal<br>Chlorination             | 1.7x1.2x0.6<br>0.5x2.3x0.6<br>0.5x1.5x0.6<br>0.7x1.2x0.6<br>0.3x1.2x0.6<br>0.25x1.2x0.6             | 870        |
| 4500                          | Equalization<br>Gravel(15-25mm)<br>Gravel(8-15mm)<br>Coarse sand(1-1.4mm)<br>Wetland<br>Charcerat(0.5ch0?8mm)U 8 Feb. 2009<br>Chlorination | 3.9x1.5x0.6<br>0.8x1.5x0.6<br>0.8x1.5x0.6<br>1.0x1.5x0.6<br>2.0x7x0.6<br>0.5x1.5x0.6<br>0.5x1.5x0.6 | 1200       |

### References

Arceivala, (1999), Wastewater Treatment for Pollution Control, Second Edition, Tata-McGrawHill.

Munavalli, G.R. and Phadatare, D .D. (2006) "Sewage treatment by vermifilter", 38th Annual convention Indian Water Works Association, Jaipur.

National Environmental Engineering Research Institute (NEERI), (2007), "Greywater Reuse in Rural Schools - Guidance Manual".

Sasse, L., (1998), "DEWATS Decentralized wastewater treatment in developing countries", BORDA publications.

USEPA, 2009, Green building